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Fragility vs resilience in transportation networks

China Highway 110, August 2010, 10-days, 100 km-long queue

I often working close to infrastructure limits

I prone to disruptions: cascade effects

=⇒ network vulnerability �
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component vulnerabilities



Fragility vs resilience in transportation networks

Disturbances in Urban Transportation Systems

 Accidents, road closures, inclement weather, etc.

 Load balancing related to adaptive road choice behavior of drivers

 Cascade effects can magnify the effect of disturbance
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typical Monday at 18:30 Monday, July 11, at 18:30

I often working close to infrastructure limits

I prone to disruptions: cascade effects

=⇒ network vulnerability �
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component vulnerabilities



Intelligent transportation networks

fast-increasing sensing and actuating capabilities

complex interactions between physics, cyber layer, and human behaviors

I scalable control with provable performance: efficiency + resilience



Resilience?

ability of the systems “to plan and prepare for, absorb, respond to,
and recover from disasters and adapt to new conditions” [US-NAS]

I network system dynamics model

I measure of performance, minimal acceptable level

I (feedback) control policy

I set of perturbations

I “smallest” perturbation s.t. performance requirement not met



Dynamical flow networks

i

I E finite set of cells ←→ links1 of a graph G = (V, E)

I xi = xi (t) = volume in cell i

ẋi = λi +
∑

j
Rjizj − zi

I λi = λi (t) ≥ 0 exogenous inflow in cell i

I zi = zi (t) ≥ 0 total outflow from cell i

I Rij ≥ 0 fraction of outflow from i going to j

I 1−
∑

j Rij ≥ 0 fraction of zi leaving network directly from i

1In other applications may be convenient to identify cells with nodes.



Dynamical flow networks

i

0

Ci

ϕi(xi)

xi

ẋi = λi +
∑

j
Rji (x)zj − zi

zi = ui (x)ϕi (xi )

I ϕi (xi ) max outflow, Ci link flow capacity
I ui (x) ∈ [0, 1] flow control
I Rij(x) dynamic routing



Measuring resilience
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I perturbation of magnitude δ :=
∑

i
|C̃i −Ci |+

∑
i
|λ̃i −λi |
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I perturbation of magnitude δ :=
∑

i
|C̃i −Ci |+

∑
i
|λ̃i −λi |

I perturbed system dynamics

ẋi = λ̃i +
∑

j
z̃jRji (x)− z̃i z̃i = u(xi )ϕ̃i (xi )



Measuring resilience

λ3

λ2

µ3

λ1

µ2

µ1

margin of resilience ν := inf
{
δ :

∑
i
xi (t) unbounded

}
ẋi = λ̃i +

∑
j
z̃jRji (x)− z̃i z̃i = u(xi )ϕ̃i (xi )

I δ := magnitude of perturbation



Measuring resilience

λ2
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U

margin of resilience ν := inf
{
δ :

∑
i
xi (t) unbounded

}
margin of
resilience

≤ min cut
res. capacity

= min
U
{CU − λU}

I Problem: max ν over routing R(x) and flow control u(x)

I What control ‘architecture’ is needed? Information flow?



Resilience with fixed routing

i

I ui ≡ 1, Rij(x) ≡ Rij constant

I start from equilibrium x∗, flow z∗i = ϕi (x
∗
i )

ν = min
i
{Ci − z∗i︸ ︷︷ ︸}

min link residual capacity



Resilience with decentralized routing

j

k

i v

(a) ui ≡ 1, Rij(x
i ) depends on local info x i

Rij(x
i ) ≥ 0

∑
j∈E+i

Rij(x
i ) ≡ 1

↑
set of links immediately downstream i



Resilience with decentralized routing

j

k

i v

(a)ui ≡ 1, Rij(x
i ) depends on local info x i

Rij(x
i ) ≥ 0

∑
j∈E+i

Rij(x
i ) ≡ 1

I Theorem [G.C.,K.Savla,D.Acemoglu,M.Dahleh,E.Frazzoli,TAC’13]

(a)

equilibrium z∗
=⇒ margin of

resilience
≤ min

v used

∑
j∈E+v

(Cj − z∗j )

︸ ︷︷ ︸
min node

res. capacity



Resilience with locally responsive routing

j

k

i v

(a) ui ≡ 1, Rij(x
i ) depends on local info

Rij(x
i ) ≥ 0

∑
j∈E+i

Rij(x
i ) ≡ 1

(b)
∂

∂xk
Rij(x

i ) ≥ 0 ∀k 6= j

xj →∞⇒ Rij → 0

I Example: i-logit

Rij(x
i ) =

e−β(xj+αj )∑
k∈E+i

e−β(xk+αk )
β > 0

1/β = noise αj = a priori cost



Resilience with locally responsive routing

j

k

i v

(a) ui ≡ 1, Rij(x
i ) depends on local info

Rij(x
i ) ≥ 0

∑
j∈E+i

Rij(x
i ) ≡ 1

(b)
∂

∂xk
Rij(x

i ) ≥ 0 ∀k 6= j

xj →∞⇒ Rij → 0

I Theorem [G.C.,K.Savla,D.Acemoglu,M.Dahleh,E.Frazzoli,TAC’13]

In acyclic networks

(a) + (b) =⇒ margin of
resilience

=
min node

res. capacity



Min node residual capacity vs min-cut capacity
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min node
res. capacity

≤ min cut
res. capacity

↗ ↖
depends on equilibrium depends on inflows only

I the gap can be arbitrarily large (even for optimal equilibrium)

I min node res. capacity ≥ α ⇐⇒ linear inequalities
(quasi-concave)



Resilience with locally responsive routing
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=
min node

res. capacity

I perturbations and information propagate downstream only

I subadditive effects of perturbations



Resilience with locally responsive routing

λ3

λ2

µ3

λ1

µ2

µ1

margin of
resilience

=
min node

res. capacity

I shocks and information propagate downstream only

I subadditive effects of perturbations



Resilience with locally responsive routing

λ3

λ2

µ3

λ1

µ2

µ1

margin of
resilience

=
min node

res. capacity

I shocks and information propagate downstream only

I subadditive effects of perturbations



Resilience with locally responsive routing
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=
min node

res. capacity

I shocks and information propagate downstream only

I subadditive effects of perturbations



Is decentralized architecture preventing optimal resilience?

i

k

j

ẋi = λi +
∑

j
Rjizj − zi

Rij = Rij(x
i ) zi = ϕi (xi )

↖

local information



Decentralized routing with flow control

i

k

j

ẋi = λi +
∑

j
Rjizj − zi

Rij = Rij(x
i ) zi = ui (x

i )ϕi (xi )

↖ ↗
local information



Decentralized monotone routing with flow control

i

k

j

I idea: slow down flow when congestion downstream > upstream

I keep closed-loop system monotone + boundary conditions

I example: ui (x
i )Rij(x

i ) =
e−β(xj+αij )

e−β(xi+αii ) +
∑
k∈E+i

e−β(xk+αik )
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Decentralized monotone routing with flow control
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I idea: slow down flow when congestion downstream > upstream
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Decentralized monotone routing with flow control
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Theorem [G.C.,E.Lovisari,K.Savla,TCONES’15] :

I min
U
{CU−λU} > 0 =⇒ ∃ globally asymptotically stable equilibrium

margin of
resilience

=
min cut

res. capacity

I min
U
{CU−λU} < 0 =⇒ minimal throughput loss, graceful degradation



Decentralized monotone routing with flow control
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I decentralized routing + flow control achieve optimal throughput

in a resilient way implicitly propagating information

I proof exploits monotonicity and l1-contraction of closed-loop
dynamics

I for other performance measures (e.g., total travel time or delay)

communication / distributed optimization layer necessary



Many more open problems
in transportation networks:

I flow dynamics model too simple: should incorporate supply
constraints to account for upstream shock propagation

i

λ3

λ2

λ1 µ4

µ5

µ6
0

Ci

Bi

ϕi(xi)

xi

σi(xi)

ẋi = λi +
∑

j
Rjizj − zi

zi ≤ ϕi (xi ) λi +
∑

j
Rjizj ≤ σi (xi )



Many more open problems

in transportation networks:

I flow dynamics model too simple: supply constraints

I different perturbation models, cascading failure mechanisms:
coevolution of network and flow (hybrid system)
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Many more open problems

in transportation networks:

I flow dynamics model too simple: supply constraints

I different perturbation models, cascading failure mechanisms

I efficiency measures beyond throughput: equilibrium flows are
not equally efficient, e.g., average delay, traffic volume, ...



Many more open problems

in transportation networks:

I flow dynamics model too simple: supply constraints

I different perturbation models, cascading failure mechanisms

I efficiency measures beyond throughput

I decentralized scheduling for traffic signal control
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Many more open problems

in transportation networks:

I flow dynamics model too simple: supply constraints

I different perturbation models, cascading failure mechanisms

I efficiency measures beyond throughput:

I scheduling for traffic signal control

I different control architectures and information flows: coupling
physical system with “cyber” (computation/communication) layer
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Many more open problems

in transportation networks:

I flow dynamics model too simple: supply constraints

I different perturbation models, cascading failure mechanisms

I efficiency measures beyond throughput:

I scheduling for traffic signal control

I different control architectures and information flows

I estimation and learning from data: driver behaviors

I selfish behaviors, incentive mechanisms, selective information
route-guidance

Mathematical tools from graph theory, game theory, non-linear
systems, convex optimization, robust and optimal control



Many more open problems
in transportation networks:

I flow dynamics model too simple: supply constraints

I different perturbation models, cascading failure mechanisms

I efficiency measures beyond throughput:

I scheduling for traffic signal control

I different control architectures and information flows

I estimation and learning from data: driver behaviors

I efficient incentive mechanisms, selective information

and in other flow networks:

I production networks and supply chains

I distribution networks (energy, gas, water)


