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Fragility vs resilience in transportation networks

China Highway 110, August 2010, 10-days, 100 km-long queue

I often working close to infrastructure limits

I prone to disruptions: cascade effects

=⇒ network vulnerability �
∑

component vulnerabilities



Fragility vs resilience in transportation networks

Disturbances in Urban Transportation Systems

 Accidents, road closures, inclement weather, etc.

 Load balancing related to adaptive road choice behavior of drivers

 Cascade effects can magnify the effect of disturbance
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I often working close to infrastructure limits

I prone to disruptions: cascade effects
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Intelligent transportation networks

fast-increasing sensing and actuating capabilities

complex interactions between physics, cyber layer, and human behaviors

I scalable control with provable performance: efficiency + resilience



Resilience?

ability of the systems “to plan and prepare for, absorb, respond to,
and recover from disasters and adapt to new conditions” [US-NAS]

I network system dynamics model

I measure of performance, minimal acceptable level

I (feedback) control policy

I set of perturbations

I “smallest” perturbation s.t. performance requirement not met



Dynamical flow networks

i

I E finite set of cells ←→ links1 of a graph G = (V, E)

I xi = xi (t) = volume in cell i

ẋi = λi +
∑

j
Rjizj − zi

I λi = λi (t) ≥ 0 exogenous inflow in cell i

I zi = zi (t) ≥ 0 total outflow from cell i

I Rij ≥ 0 fraction of outflow from i going to j

I 1−
∑

j Rij ≥ 0 fraction of zi leaving network directly from i

1In other applications may be convenient to identify cells with nodes.



Dynamical flow networks

i

0

Ci

ϕi(xi)

xi

ẋi = λi +
∑

j
Rji (x)zj − zi

zi = ui (x)ϕi (xi )

I ϕi (xi ) max outflow, Ci link flow capacity
I ui (x) ∈ [0, 1] flow control
I Rij(x) dynamic routing



Measuring resilience
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I perturbation of magnitude δ :=
∑

i
|C̃i −Ci |+

∑
i
|λ̃i −λi |
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I perturbation of magnitude δ :=
∑

i
|C̃i −Ci |+

∑
i
|λ̃i −λi |

I perturbed system dynamics

ẋi = λ̃i +
∑

j
z̃jRji (x)− z̃i z̃i = u(xi )ϕ̃i (xi )



Measuring resilience
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margin of resilience ν := inf
{
δ :

∑
i
xi (t) unbounded

}
ẋi = λ̃i +

∑
j
z̃jRji (x)− z̃i z̃i = u(xi )ϕ̃i (xi )

I δ := magnitude of perturbation



Measuring resilience
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margin of resilience ν := inf
{
δ :

∑
i
xi (t) unbounded

}
margin of
resilience

≤ min cut
res. capacity

= min
U
{CU − λU}

I Problem: max ν over routing R(x) and flow control u(x)

I What control ‘architecture’ is needed? Information flow?



Resilience with fixed routing

i

I ui ≡ 1, Rij(x) ≡ Rij constant

I start from equilibrium x∗, flow z∗i = ϕi (x
∗
i )

ν = min
i
{Ci − z∗i︸ ︷︷ ︸}

min link residual capacity



Resilience with decentralized routing

j

k

i v

(a) ui ≡ 1, Rij(x
i ) depends on local info x i

Rij(x
i ) ≥ 0

∑
j∈E+i

Rij(x
i ) ≡ 1

↑
set of links immediately downstream i



Resilience with decentralized routing

j

k

i v

(a)ui ≡ 1, Rij(x
i ) depends on local info x i

Rij(x
i ) ≥ 0

∑
j∈E+i

Rij(x
i ) ≡ 1

I Theorem [G.C.,K.Savla,D.Acemoglu,M.Dahleh,E.Frazzoli,TAC’13]

(a)

equilibrium z∗
=⇒ margin of

resilience
≤ min

v used

∑
j∈E+v

(Cj − z∗j )

︸ ︷︷ ︸
min node

res. capacity



Resilience with locally responsive routing

j

k

i v

(a) ui ≡ 1, Rij(x
i ) depends on local info

Rij(x
i ) ≥ 0

∑
j∈E+i

Rij(x
i ) ≡ 1

(b)
∂

∂xk
Rij(x

i ) ≥ 0 ∀k 6= j

xj →∞⇒ Rij → 0

I Example: i-logit

Rij(x
i ) =

e−β(xj+αj )∑
k∈E+i

e−β(xk+αk )
β > 0

1/β = noise αj = a priori cost



Resilience with locally responsive routing

j

k

i v

(a) ui ≡ 1, Rij(x
i ) depends on local info

Rij(x
i ) ≥ 0

∑
j∈E+i

Rij(x
i ) ≡ 1

(b)
∂

∂xk
Rij(x

i ) ≥ 0 ∀k 6= j

xj →∞⇒ Rij → 0

I Theorem [G.C.,K.Savla,D.Acemoglu,M.Dahleh,E.Frazzoli,TAC’13]

In acyclic networks

(a) + (b) =⇒ margin of
resilience

=
min node

res. capacity



Min node residual capacity vs min-cut capacity
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min node
res. capacity

≤ min cut
res. capacity

↗ ↖
depends on equilibrium depends on inflows only

I the gap can be arbitrarily large (even for optimal equilibrium)

I min node res. capacity ≥ α ⇐⇒ linear inequalities
(quasi-concave)



Resilience with locally responsive routing
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=
min node

res. capacity

I perturbations and information propagate downstream only

I subadditive effects of perturbations
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Resilience with locally responsive routing
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margin of
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=
min node

res. capacity

I shocks and information propagate downstream only

I subadditive effects of perturbations



Is decentralized architecture preventing optimal resilience?

i

k

j

ẋi = λi +
∑

j
Rjizj − zi

Rij = Rij(x
i ) zi = ϕi (xi )

↖

local information



Decentralized routing with flow control

i

k

j

ẋi = λi +
∑

j
Rjizj − zi

Rij = Rij(x
i ) zi = ui (x

i )ϕi (xi )

↖ ↗
local information



Decentralized monotone routing with flow control

i

k

j

I idea: slow down flow when congestion downstream > upstream

I keep closed-loop system monotone + boundary conditions

I example: ui (x
i )Rij(x

i ) =
e−β(xj+αij )

e−β(xi+αii ) +
∑
k∈E+i

e−β(xk+αik )
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Decentralized monotone routing with flow control
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I idea: slow down flow when congestion downstream > upstream

I example: ui (x
i )Rij(x
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Decentralized monotone routing with flow control
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Theorem [G.C.,E.Lovisari,K.Savla,TCONES’15] :

I min
U
{CU−λU} > 0 =⇒ ∃ globally asymptotically stable equilibrium

margin of
resilience

=
min cut

res. capacity

I min
U
{CU−λU} < 0 =⇒ minimal throughput loss, graceful degradation



Decentralized monotone routing with flow control
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I decentralized routing + flow control achieve optimal throughput

in a resilient way implicitly propagating information

I proof exploits monotonicity and l1-contraction of closed-loop
dynamics

I for other performance measures (e.g., total travel time or delay)

communication / distributed optimization layer necessary



Many more open problems
in transportation networks:

I flow dynamics model too simple: should incorporate supply
constraints to account for upstream shock propagation

i

λ3

λ2

λ1 µ4

µ5

µ6
0

Ci

Bi

ϕi(xi)

xi

σi(xi)

ẋi = λi +
∑

j
Rjizj − zi

zi ≤ ϕi (xi ) λi +
∑

j
Rjizj ≤ σi (xi )



Many more open problems

in transportation networks:

I flow dynamics model too simple: supply constraints

I different perturbation models, cascading failure mechanisms:
coevolution of network and flow (hybrid system)
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Many more open problems

in transportation networks:

I flow dynamics model too simple: supply constraints

I different perturbation models, cascading failure mechanisms

I efficiency measures beyond throughput: equilibrium flows are
not equally efficient, e.g., average delay, traffic volume, ...



Many more open problems

in transportation networks:

I flow dynamics model too simple: supply constraints

I different perturbation models, cascading failure mechanisms

I efficiency measures beyond throughput

I decentralized scheduling for traffic signal control
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Many more open problems

in transportation networks:

I flow dynamics model too simple: supply constraints

I different perturbation models, cascading failure mechanisms

I efficiency measures beyond throughput:

I scheduling for traffic signal control

I different control architectures and information flows: coupling
physical system with “cyber” (computation/communication) layer
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Many more open problems

in transportation networks:

I flow dynamics model too simple: supply constraints

I different perturbation models, cascading failure mechanisms

I efficiency measures beyond throughput:

I scheduling for traffic signal control

I different control architectures and information flows

I estimation and learning from data: driver behaviors

I selfish behaviors, incentive mechanisms, selective information
route-guidance

Mathematical tools from graph theory, game theory, non-linear
systems, convex optimization, robust and optimal control



Many more open problems
in transportation networks:

I flow dynamics model too simple: supply constraints

I different perturbation models, cascading failure mechanisms

I efficiency measures beyond throughput:

I scheduling for traffic signal control

I different control architectures and information flows

I estimation and learning from data: driver behaviors

I efficient incentive mechanisms, selective information

and in other flow networks:

I production networks and supply chains

I distribution networks (energy, gas, water)


